
GameState 

INHERITS FROM Object

DECLARED IN OpponentApp/GameState.h

CLASS DESCRIPTION

The GameState class maintains the state of a Ragnarok game: where the pieces are, 
what turn it is, and the game history.    When a Ragnarok application communicates with 
another Ragnarok application over the network, or with a computer opponent, it sends 
instances of the GameState class.

CONSTANTS AND DEFINED TYPES

The 37 pieces are Ragnarok are numbered as follows: 0¼23 are the White pawns, 



24¼35 are the Black pawns, and 36 is Loki.

The constants CENTER, CORNER, OFFBOARD, and PLAIN refer to whether a 
particular location is the center of the board, a corner, an off-board (unused) square, or 
just a plain old square.

The constants NOBODY, W_PAWN, B_PAWN, and LOKI refer to the occupancy of a 
square.

The constants BLACK, WHITE, BLACK_WON, WHITE_WON, and DRAW refer to the 
state of the game (how the game ended, or whose turn it is).

In Ragnarok, squares are labeled a¼k horizontally, and 1¼11 vertically.    Inside the 
Ragnarok program, they are referenced by as ordered pairs: <0¼10, 0¼10>.    For 
efficiency, in the GameState data structures, locations are encoded as unsigned char's. 
The macro XYTONUM(x,y) returns the encoding of the ordered pair <x,y>.    The macro 



NUMTOX(num) returns the first element of the pair encoded by num, and 
NUMTOY(num) returns the second element of the pair encoded by num.    Adding EAST 
to an encoding num results in the encoding of the location one square east of the 
location referenced by num.    WEST, NORTH, and SOUTH work similarly.

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in GameState unsigned char pieceLocs[37];
struct spot {

unsigned char who;
unsigned char idnum;

} pieces[256];
unsigned char whoseTurn;
unsigned char numPawns[2];



struct move {
unsigned char from;
unsigned char to;

} moves[1024];
short numMoves;
struct capture {

short when;
unsigned char where;
unsigned char idnum;

} captures;
short numCaptures;

pieceLocs The encoded locations of the pieces.

pieces A list of the piece types and locations, indexed by 
location on the board.



whoseTurn The state of the game: White's turn, Black's turn, 
game drawn, White victory, or Black victory.

numPawns How many pawns each side has.

moves The moves made in the game.

numMoves How many moves have been made in the game.

captures The captures made in the game.

numCaptures How many captures have been made in the game.

METHOD TYPES



Initializing the class + initialize

Initializing a new GameState - init
- resetState

Making moves - makeMove:
- makeWhiteMove:
- makeBlackMove:

Undoing moves - undoMove
- undoWhiteMove
- undoBlackMove

Questions about moves - anyLegalMoves
- checkMove:



Archiving - read:
- write:

CLASS METHODS

initialize
+ initialize

Prepares internal class variables.    Returns self.

INSTANCE METHODS

anyLegalMoves
- (BOOL)anyLegalMoves



Returns YES if there are any legal moves from the current position.

checkMove
- (BOOL)checkMove:(struct move)request

Returns YES if request is a legal move from the current position.

init
- init

Initializes the GameState, which must be a newly allocated GameState instance.    
Returns self.

makeMove:
- (void)makeMove:(struct move)request

Makes the move request, which should be a legal move.    The legality of the move is not 



checked, so be careful.    This method simply calls makeWhiteMove: or 
makeBlackMove:, depending on whose turn it is.

makeWhiteMove:
- (void)makeWhiteMove:(struct move)request

Makes the move request, which should be a legal move for White to make (i.e. the move 
is legal and it's White's turn).    The legality of the move is not checked, so be careful.

makeBlackMove:
- (void)makeBlackMove:(struct move)request

Makes the move request, which should be a legal move for Black to make (i.e. the move 
is legal and it's Black's turn).    The legality of the move is not checked, so be careful.

read:
- read:(NXTypedStream *)stream



Reads the GameState from the typed stream stream.

resetState
- (void)resetState

Resets the GameState to the starting position.

undoMove
- (void)undoMove

Undoes the last move made in the GameState, in which there should be at least one 
move made.    This method simply calls undoWhiteMove or undoBlackMove, 
depending on whose turn it was.

undoWhiteMove
- (void)undoWhiteMove



Undoes the last move made in the GameState, in which there should be at least one 
move made.    Also, it should be Black's turn (so that the last move made was a White 
move).

undoBlackMove
- (void)undoBlackMove

Undoes the last move made in the GameState, in which there should be at least one 
move made.    Also, it should be White's turn (so that the last move made was a Black 
move).

write:
- write:(NXTypedStream *)stream

Writes the GameState to the typed stream stream.


